**Net2Vis: Transforming Deep Convolutional Networks into Publication-Ready Visualizations**

To properly convey neural network architectures in publications, appropriate visualization techniques are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted, which results in a lack of a common visual grammar, as well as a significant time investment. Since these visualizations are often crafted just before publication, they are also prone to contain errors, might deviate from the actual architecture, and are sometimes ambiguous to interpret. Current automatic network visualization toolkits focus on debugging the network itself, and are therefore not ideal for generating publication-ready visualization, as they cater a different level of detail. Therefore, we present an approach to automate this process by translating network architectures specified in Python, into publication-ready network visualizations that can directly be embedded into any publication. To improve the readability of these visualizations, and in order to make them comparable, the generated visualizations obey to a visual grammar, which we have derived based on the analysis of existing network visualizations. Besides carefully crafted visual encodings, our grammar also incorporates abstraction through layer accumulation, as it is often done to reduce the complexity of the network architecture to be communicated. Thus, our approach not only reduces the time needed to generate publication-ready network visualizations, but also enables a unified and unambiguous visualization design.

**Divergence-Based Motivation for Online EM and Combining Hidden Variable Models**

Expectation-Maximization (EM) is the fallback method for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and then updates to the minimizer of this upper-bound. We introduce a versatile online variant of EM where the data arrives in as a stream. Our motivation is based on the relative entropy divergences between two joint distributions over the hidden and visible variables. We view the EM upper-bound as a Monte Carlo approximation of an expectation and show that the joint relative entropy divergence induces a similar expectation form. As a result, we employ the divergence to the old model as the inertia term to motivate our online EM algorithm. Our motivation is more widely applicable than previous ones and leads to simple online updates for mixture of exponential distributions, hidden Markov models, and the first known online update for Kalman filters. Additionally, the finite sample form of the inertia term lets us derive online updates when there is no closed form solution. Experimentally, sweeping the data with an online update converges much faster than the batch update. Our divergence based methods also lead to a simple way to combine hidden variable models and this immediately gives efficient algorithms for distributed setting.

**CPOI: A Compact Method to Archive Versioned RDF Triple-Sets**

Large amounts of RDF/S data are produced and published lately, and several modern applications require the provision of versioning and archiving services over such datasets. In this paper we propose a novel storage index for archiving versions of such datasets, called CPOI (compact partial order index), that exploits the fact that an RDF Knowledge Base (KB), is a graph (or equivalently a set of triples), and thus it has not a unique serialization (as it happens with text). If we want to keep stored several versions we actually want to store multiple sets of triples. CPOI is a data structure for storing such sets aiming at reducing the storage space since this is important not only for reducing storage costs, but also for reducing the various communication costs and enabling hosting in main memory (and thus processing efficiently) large quantities of data. CPOI is based on a partial order structure over sets of triple identifiers, where the triple identifiers are represented in a gapped form using variable length encoding schemes. For this index we evaluate analytically and experimentally various identifier assignment techniques and their space savings. The results show significant storage savings, specifically, the storage space of the compressed sets in large and realistic synthetic datasets is about the 8% of the size of the uncompressed sets.

**ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing**

In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic memory footprint and enhance the computational efficiency of SNNs for complex pattern recognition tasks. ReStoCNet consists of an input layer followed by stacked convolutional layers for hierarchical input feature extraction, pooling layers for dimensionality reduction, and fully-connected layer for inference. In addition, we introduce residual connections between the stacked convolutional layers to improve the hierarchical feature learning capability of deep SNNs. We propose Spike Timing Dependent Plasticity (STDP) based probabilistic learning algorithm, referred to as Hybrid-STDP (HB-STDP), incorporating Hebbian and anti-Hebbian learning mechanisms, to train the binary kernels forming ReStoCNet in a layer-wise unsupervised manner. We demonstrate the efficacy of ReStoCNet and the presented HB-STDP based unsupervised training methodology on the MNIST and CIFAR-10 datasets. We show that residual connections enable the deeper convolutional layers to self-learn useful high-level input features and mitigate the accuracy loss observed in deep SNNs devoid of residual connections. The proposed ReStoCNet offers >20x kernel memory compression compared to full-precision (32-bit) SNN while yielding high enough classification accuracy on the chosen pattern recognition tasks.

**Domain Constraint Approximation based Semi Supervision**

Deep learning for supervised learning has achieved astonishing performance in various machine learning applications. However, annotated data is expensive and rare. In practice, only a small portion of data samples are annotated. Pseudo-ensembling-based approaches have achieved state-of-the-art results in computer vision related tasks. However, it still relies on the quality of an initial model built by labeled data. Less labeled data may degrade model performance a lot. Domain constraint is another way regularize the posterior but has some limitation. In this paper, we proposed a fuzzy domain-constraint-based framework which loses the requirement of traditional constraint learning and enhances the model quality for semi supervision. Simulations results show the effectiveness of our design.

**Stochastic Reinforcement Learning**

In reinforcement learning episodes, the rewards and punishments are often non-deterministic, and there are invariably stochastic elements governing the underlying situation. Such stochastic elements are often numerous and cannot be known in advance, and they have a tendency to obscure the underlying rewards and punishments patterns. Indeed, if stochastic elements were absent, the same outcome would occur every time and the learning problems involved could be greatly simplified. In addition, in most practical situations, the cost of an observation to receive either a reward or punishment can be significant, and one would wish to arrive at the correct learning conclusion by incurring minimum cost. In this paper, we present a stochastic approach to reinforcement learning which explicitly models the variability present in the learning environment and the cost of observation. Criteria and rules for learning success are quantitatively analyzed, and probabilities of exceeding the observation cost bounds are also obtained.

**Performance Dynamics and Termination Errors in Reinforcement Learning: A Unifying Perspective**

In reinforcement learning, a decision needs to be made at some point as to whether it is worthwhile to carry on with the learning process or to terminate it. In many such situations, stochastic elements are often present which govern the occurrence of rewards, with the sequential occurrences of positive rewards randomly interleaved with negative rewards. For most practical learners, the learning is considered useful if the number of positive rewards always exceeds the negative ones. A situation that often calls for learning termination is when the number of negative rewards exceeds the number of positive rewards. However, while this seems reasonable, the error of premature termination, whereby termination is enacted along with the conclusion of learning failure despite the positive rewards eventually far outnumber the negative ones, can be significant. In this paper, using combinatorial analysis we study the error probability in wrongly terminating a reinforcement learning activity which undermines the effectiveness of an optimal policy, and we show that the resultant error can be quite high. Whilst we demonstrate mathematically that such errors can never be eliminated, we propose some practical mechanisms that can effectively reduce such errors. Simulation experiments have been carried out, the results of which are in close agreement with our theoretical findings.

**LS-Tree: Model Interpretation When the Data Are Linguistic**

We study the problem of interpreting trained classification models in the setting of linguistic data sets. Leveraging a parse tree, we propose to assign least-squares based importance scores to each word of an instance by exploiting syntactic constituency structure. We establish an axiomatic characterization of these importance scores by relating them to the Banzhaf value in coalitional game theory. Based on these importance scores, we develop a principled method for detecting and quantifying interactions between words in a sentence. We demonstrate that the proposed method can aid in interpretability and diagnostics for several widely-used language models.

**MaCow: Masked Convolutional Generative Flow**

Flow-based generative models, conceptually attractive due to tractability of both the exact log-likelihood computation and latent-variable inference, and efficiency of both training and sampling, has led to a number of impressive empirical successes and spawned many advanced variants and theoretical investigations. Despite their computational efficiency, the density estimation performance of flow-based generative models significantly falls behind those of state-of-the-art autoregressive models. In this work, we introduce masked convolutional generative flow (MaCow), a simple yet effective architecture of generative flow using masked convolution. By restricting the local connectivity in a small kernel, MaCow enjoys the properties of fast and stable training, and efficient sampling, while achieving significant improvements over Glow for density estimation on standard image benchmarks, considerably narrowing the gap to autoregressive models.

**Multi-objective Bayesian optimisation with preferences over objectives**

We present a Bayesian multi-objective optimisation algorithm that allows the user to express preference-order constraints on the objectives of the type `objective A is more important than objective B’. Rather than attempting to find a representative subset of the complete Pareto front, our algorithm searches for and returns only those Pareto-optimal points that satisfy these constraints. We formulate a new acquisition function based on expected improvement in dominated hypervolume (EHI) to ensure that the subset of Pareto front satisfying the constraints is thoroughly explored. The hypervolume calculation only includes those points that satisfy the preference-order constraints, where the probability of a point satisfying the constraints is calculated from a gradient Gaussian Process model. We demonstrate our algorithm on both synthetic and real-world problems.

**Effects of empathy on the evolution of fairness in group-structured populations**

The ultimatum game has been a prominent paradigm in studying the evolution of fairness. It predicts that responders should accept any nonzero offer and proposers should offer the smallest possible amount according to orthodox game theory. However, the prediction strongly contradicts with experimental findings where responders usually reject low offers below

and proposers usually make higher offers than expected. To explain the evolution of such fair behaviors, we here introduce empathy in group-structured populations by allowing a proportion

of the population to play empathetic strategies. Interestingly, we find that for high mutation probabilities, the mean offer decreases with

and the mean demand increases, implying empathy inhibits the evolution of fairness. For low mutation probabilities, the mean offer and demand approach to the fair ones with increasing

, implying empathy promotes the evolution of fairness. Furthermore, under both weak and strong intensities of natural selection, we analytically calculate the mean offer and demand for different levels of

. Counterintuitively, we demonstrate that although a higher mutation probability leads to a higher level of fairness under weak selection, an intermediate mutation probability corresponds to the lowest level of fairness under strong selection. Our study provides systematic insights into the evolutionary origin of fairness in group-structured populations with empathetic strategies.

**Adversarial Samples on Android Malware Detection Systems for IoT Systems**

Many IoT (Internet of Things) systems run Android systems or Android-like systems. With the continuous development of machine learning algorithms, the learning-based Android malware detection system for IoT devices has gradually increased. However, these learning-based detection models are often vulnerable to adversarial samples. An automated testing framework is needed to help these learning-based malware detection systems for IoT devices perform security analysis. The current methods of generating adversarial samples mostly require training parameters of models and most of the methods are aimed at image data. To solve this problem, we propose a \textbf{t}esting framework for \textbf{l}earning-based \textbf{A}ndroid \textbf{m}alware \textbf{d}etection systems (TLAMD) for IoT Devices. The key challenge is how to construct a suitable fitness function to generate an effective adversarial sample without affecting the features of the application. By introducing genetic algorithms and some technical improvements, our test framework can generate adversarial samples for the IoT Android Application with a success rate of nearly 100\% and can perform black-box testing on the system.

**VERIFAI: A Toolkit for the Design and Analysis of Artificial Intelligence-Based Systems**

We present VERIFAI, a software toolkit for the formal design and analysis of systems that include artificial intelligence (AI) and machine learning (ML) components. VERIFAI particularly seeks to address challenges with applying formal methods to perception and ML components, including those based on neural networks, and to model and analyze system behavior in the presence of environment uncertainty. We describe the initial version of VERIFAI which centers on simulation guided by formal models and specifications. Several use cases are illustrated with examples, including temporal-logic falsification, model-based systematic fuzz testing, parameter synthesis, counterexample analysis, and data set augmentation.

**Thompson Sampling with Information Relaxation Penalties**

We consider a finite time horizon multi-armed bandit (MAB) problem in a Bayesian framework, for which we develop a general set of control policies that leverage ideas from information relaxations of stochastic dynamic optimization problems. In crude terms, an information relaxation allows the decision maker (DM) to have access to the future (unknown) rewards and incorporate them in her optimization problem to pick an action at time

, but penalizes the decision maker for using this information. In our setting, the future rewards allow the DM to better estimate the unknown mean reward parameters of the multiple arms, and optimize her sequence of actions. By picking different information penalties, the DM can construct a family of policies of increasing complexity that, for example, include Thompson Sampling and the true optimal (but intractable) policy as special cases. We systematically develop this framework of information relaxation sampling, propose an intuitive family of control policies for our motivating finite time horizon Bayesian MAB problem, and prove associated structural results and performance bounds. Numerical experiments suggest that this new class of policies performs well, in particular in settings where the finite time horizon introduces significant tension in the problem. Finally, inspired by the finite time horizon Gittins index, we propose an index policy that builds on our framework that particularly outperforms to the state-of-the-art algorithms in our numerical experiments.

**A Theory of Selective Prediction**

We consider a model of selective prediction, where the prediction algorithm is given a data sequence in an online fashion and asked to predict a pre-specified statistic of the upcoming data points. The algorithm is allowed to choose when to make the prediction as well as the length of the prediction window, possibly depending on the observations so far. We prove that, even without any distributional assumption on the input data stream, a large family of statistics can be estimated to non-trivial accuracy. To give one concrete example, suppose that we are given access to an arbitrary binary sequence

of length

. Our goal is to accurately predict the average observation, and we are allowed to choose the window over which the prediction is made: for some

and

, after seeing

observations we predict the average of

. We show that the expected squared error of our prediction can be bounded by

, and prove a matching lower bound. This result holds for any sequence (that is not adaptive to when the prediction is made, or the predicted value), and the expectation of the error is with respect to the randomness of the prediction algorithm. Our results apply to more general statistics of a sequence of observations, and we highlight several open directions for future work.

**Deep Reinforcement Learning from Policy-Dependent Human Feedback**

To widen their accessibility and increase their utility, intelligent agents must be able to learn complex behaviors as specified by (non-expert) human users. Moreover, they will need to learn these behaviors within a reasonable amount of time while efficiently leveraging the sparse feedback a human trainer is capable of providing. Recent work has shown that human feedback can be characterized as a critique of an agent’s current behavior rather than as an alternative reward signal to be maximized, culminating in the COnvergent Actor-Critic by Humans (COACH) algorithm for making direct policy updates based on human feedback. Our work builds on COACH, moving to a setting where the agent’s policy is represented by a deep neural network. We employ a series of modifications on top of the original COACH algorithm that are critical for successfully learning behaviors from high-dimensional observations, while also satisfying the constraint of obtaining reduced sample complexity. We demonstrate the effectiveness of our Deep COACH algorithm in the rich 3D world of Minecraft with an agent that learns to complete tasks by mapping from raw pixels to actions using only real-time human feedback in 10-15 minutes of interaction.

**NAIL: A General Interactive Fiction Agent**

Interactive Fiction (IF) games are complex textual decision making problems. This paper introduces NAIL, an autonomous agent for general parser-based IF games. NAIL won the 2018 Text Adventure AI Competition, where it was evaluated on twenty unseen games. This paper describes the architecture, development, and insights underpinning NAIL’s performance.

**Table2answer: Read the database and answer without SQL**

Semantic parsing is the task of mapping natural language to logic form. In question answering, semantic parsing can be used to map the question to logic form and execute the logic form to get the answer. One key problem for semantic parsing is the hard label work. We study this problem in another way: we do not use the logic form any more. Instead we only use the schema and answer info. We think that the logic form step can be injected into the deep model. The reason why we think removing the logic form step is possible is that human can do the task without explicit logic form. We use BERT-based model and do the experiment in the WikiSQL dataset, which is a large natural language to SQL dataset. Our experimental evaluations that show that our model can achieves the baseline results in WikiSQL dataset.

**WikiLinkGraphs: A complete, longitudinal and multi-language dataset of the Wikipedia link networks**

Wikipedia articles contain multiple links connecting a subject to other pages of the encyclopedia. In Wikipedia parlance, these links are called internal links or wikilinks. We present a complete dataset of the network of internal Wikipedia links for the

largest language editions. The dataset contains yearly snapshots of the network and spans

years, from the creation of Wikipedia in 2001 to March 1st, 2018. While previous work has mostly focused on the complete hyperlink graph which includes also links automatically generated by templates, we parsed each revision of each article to track links appearing in the main text. In this way we obtained a cleaner network, discarding more than half of the links and representing all and only the links intentionally added by editors. We describe in detail how the Wikipedia dumps have been processed and the challenges we have encountered, including the need to handle special pages such as redirects, i.e., alternative article titles. We present descriptive statistics of several snapshots of this network. Finally, we propose several research opportunities that can be explored using this new dataset.

**Generalized Lineage-Aware Temporal Windows: Supporting Outer and Anti Joins in Temporal-Probabilistic Databases**

The result of a temporal-probabilistic (TP) join with negation includes, at each time point, the probability with which a tuple of a positive relation

matches none of the tuples in a negative relation

, for a given join condition

. TP outer and anti joins thus resemble the characteristics of relational outer and anti joins also in the case when there exist time points at which input tuples from

have non-zero probabilities to be

and input tuples from

have non-zero probabilities to be

, respectively. For the computation of TP joins with negation, we introduce generalized lineage-aware temporal windows, a mechanism that binds an output interval to the lineages of all the matching valid tuples of each input relation. We group the windows of two TP relations into three disjoint sets based on the way attributes, lineage expressions and intervals are produced. We compute all windows in an incremental manner, and we show that pipelined computations allow for the direct integration of our approach into PostgreSQL. We thereby alleviate the prevalent redundancies in the interval computations of existing approaches, which is proven by an extensive experimental evaluation with real-world datasets.

**Verification Code Recognition Based on Active and Deep Learning**

A verification code is an automated test method used to distinguish between humans and computers. Humans can easily identify verification codes, whereas machines cannot. With the development of convolutional neural networks, automatically recognizing a verification code is now possible for machines. However, the advantages of convolutional neural networks depend on the data used by the training classifier, particularly the size of the training set. Therefore, identifying a verification code using a convolutional neural network is difficult when training data are insufficient. This study proposes an active and deep learning strategy to obtain new training data on a special verification code set without manual intervention. A feature learning model for a scene with less training data is presented in this work, and the verification code is identified by the designed convolutional neural network. Experiments show that the method can considerably improve the recognition accuracy of a neural network when the amount of initial training data is small.

**TensorSCONE: A Secure TensorFlow Framework using Intel SGX**

Machine learning has become a critical component of modern data-driven online services. Typically, the training phase of machine learning techniques requires to process large-scale datasets which may contain private and sensitive information of customers. This imposes significant security risks since modern online services rely on cloud computing to store and process the sensitive data. In the untrusted computing infrastructure, security is becoming a paramount concern since the customers need to trust the thirdparty cloud provider. Unfortunately, this trust has been violated multiple times in the past. To overcome the potential security risks in the cloud, we answer the following research question: how to enable secure executions of machine learning computations in the untrusted infrastructure? To achieve this goal, we propose a hardware-assisted approach based on Trusted Execution Environments (TEEs), specifically Intel SGX, to enable secure execution of the machine learning computations over the private and sensitive datasets. More specifically, we propose a generic and secure machine learning framework based on Tensorflow, which enables secure execution of existing applications on the commodity untrusted infrastructure. In particular, we have built our system called TensorSCONE from ground-up by integrating TensorFlow with SCONE, a shielded execution framework based on Intel SGX. The main challenge of this work is to overcome the architectural limitations of Intel SGX in the context of building a secure TensorFlow system. Our evaluation shows that we achieve reasonable performance overheads while providing strong security properties with low TCB.

**Examining Adversarial Learning against Graph-based IoT Malware Detection Systems**

The main goal of this study is to investigate the robustness of graph-based Deep Learning (DL) models used for Internet of Things (IoT) malware classification against Adversarial Learning (AL). We designed two approaches to craft adversarial IoT software, including Off-the-Shelf Adversarial Attack (OSAA) methods, using six different AL attack approaches, and Graph Embedding and Augmentation (GEA). The GEA approach aims to preserve the functionality and practicality of the generated adversarial sample through a careful embedding of a benign sample to a malicious one. Our evaluations demonstrate that OSAAs are able to achieve a misclassification rate (MR) of 100%. Moreover, we observed that the GEA approach is able to misclassify all IoT malware samples as benign.

**Learning interpretable continuous-time models of latent stochastic dynamical systems**

We develop an approach to learn an interpretable semi-parametric model of a latent continuous-time stochastic dynamical system, assuming noisy high-dimensional outputs sampled at uneven times. The dynamics are described by a nonlinear stochastic differential equation (SDE) driven by a Wiener process, with a drift evolution function drawn from a Gaussian process (GP) conditioned on a set of learnt fixed points and corresponding local Jacobian matrices. This form yields a flexible nonparametric model of the dynamics, with a representation corresponding directly to the interpretable portraits routinely employed in the study of nonlinear dynamical systems. The learning algorithm combines inference of continuous latent paths underlying observed data with a sparse variational description of the dynamical process. We demonstrate our approach on simulated data from different nonlinear dynamical systems.

**Joint Training of Neural Network Ensembles**

We examine the practice of joint training for neural network ensembles, in which a multi-branch architecture is trained via single loss. This approach has recently gained traction, with claims of greater accuracy per parameter along with increased parallelism. We introduce a family of novel loss functions generalizing multiple previously proposed approaches, with which we study theoretical and empirical properties of joint training. These losses interpolate smoothly between independent and joint training of predictors, demonstrating that joint training has several disadvantages not observed in prior work. However, with appropriate regularization via our proposed loss, the method shows new promise in resource limited scenarios and fault-tolerant systems, e.g., IoT and edge devices. Finally, we discuss how these results may have implications for general multi-branch architectures such as ResNeXt and Inception.

**Performance of All-Pairs Shortest-Paths Solvers with Apache Spark**

Algorithms for computing All-Pairs Shortest-Paths (APSP) are critical building blocks underlying many practical applications. The standard sequential algorithms, such as Floyd-Warshall and Johnson, quickly become infeasible for large input graphs, necessitating parallel approaches. In this work, we provide detailed analysis of parallel APSP performance on distributed memory clusters with Apache Spark. The Spark model allows for a portable and easy to deploy distributed implementation, and hence is attractive from the end-user point of view. We propose four different APSP implementations for large undirected weighted graphs, which differ in complexity and degree of reliance on techniques outside of pure Spark API. We demonstrate that Spark is able to handle APSP problems with over 200,000 vertices on a 1024-core cluster, and can compete with a naive MPI-based solution. However, our best performing solver requires auxiliary shared persistent storage, and is over two times slower than optimized MPI-based solver.

**Machine Reading Comprehension for Answer Re-Ranking in Customer Support Chatbots**

Recent advances in deep neural networks, language modeling and language generation have introduced new ideas to the field of conversational agents. As a result, deep neural models such as sequence-to-sequence, Memory Networks, and the Transformer have become key ingredients of state-of-the-art dialog systems. While those models are able to generate meaningful responses even in unseen situation, they need a lot of training data to build a reliable model. Thus, most real-world systems stuck to traditional approaches based on information retrieval and even hand-crafted rules, due to their robustness and effectiveness, especially for narrow-focused conversations. Here, we present a method that adapts a deep neural architecture from the domain of machine reading comprehension to re-rank the suggested answers from different models using the question as context. We train our model using negative sampling based on question-answer pairs from the Twitter Customer Support Dataset.The experimental results show that our re-ranking framework can improve the performance in terms of word overlap and semantics both for individual models as well as for model combinations.

**A Domain Generalization Perspective on Listwise Context Modeling**

As one of the most popular techniques for solving the ranking problem in information retrieval, Learning-to-rank (LETOR) has received a lot of attention both in academia and industry due to its importance in a wide variety of data mining applications. However, most of existing LETOR approaches choose to learn a single global ranking function to handle all queries, and ignore the substantial differences that exist between queries. In this paper, we propose a domain generalization strategy to tackle this problem. We propose Query-Invariant Listwise Context Modeling (QILCM), a novel neural architecture which eliminates the detrimental influence of inter-query variability by learning \textit{query-invariant} latent representations, such that the ranking system could generalize better to unseen queries. We evaluate our techniques on benchmark datasets, demonstrating that QILCM outperforms previous state-of-the-art approaches by a substantial margin.

**Capacity allocation analysis of neural networks: A tool for principled architecture design**

Designing neural network architectures is a task that lies somewhere between science and art. For a given task, some architectures are eventually preferred over others, based on a mix of intuition, experience, experimentation and luck. For many tasks, the final word is attributed to the loss function, while for some others a further perceptual evaluation is necessary to assess and compare performance across models. In this paper, we introduce the concept of capacity allocation analysis, with the aim of shedding some light on what network architectures focus their modelling capacity on, when used on a given task. We focus more particularly on spatial capacity allocation, which analyzes a posteriori the effective number of parameters that a given model has allocated for modelling dependencies on a given point or region in the input space, in linear settings. We use this framework to perform a quantitative comparison between some classical architectures on various synthetic tasks. Finally, we consider how capacity allocation might translate in non-linear settings.

**The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy**

Privacy-preserving data analysis is a rising challenge in contemporary statistics, as the privacy guarantees of statistical methods are often achieved at the expense of accuracy. In this paper, we investigate the tradeoff between statistical accuracy and privacy in mean estimation and linear regression, under both the classical low-dimensional and modern high-dimensional settings. A primary focus is to establish minimax optimality for statistical estimation with the

-differential privacy constraint. To this end, we find that classical lower bound arguments fail to yield sharp results, and new technical tools are called for. We first develop a general lower bound argument for estimation problems with differential privacy constraints, and then apply the lower bound argument to mean estimation and linear regression. For these statistical problems, we also design computationally efficient algorithms that match the minimax lower bound up to a logarithmic factor. In particular, for the high-dimensional linear regression, a novel private iterative hard thresholding pursuit algorithm is proposed, based on a privately truncated version of stochastic gradient descent. The numerical performance of these algorithms is demonstrated by simulation studies and applications to real data containing sensitive information, for which privacy-preserving statistical methods are necessary.

**Fast-SCNN: Fast Semantic Segmentation Network**

The encoder-decoder framework is state-of-the-art for offline semantic image segmentation. Since the rise in autonomous systems, real-time computation is increasingly desirable. In this paper, we introduce fast segmentation convolutional neural network (Fast-SCNN), an above real-time semantic segmentation model on high resolution image data (1024x2048px) suited to efficient computation on embedded devices with low memory. Building on existing two-branch methods for fast segmentation, we introduce our `learning to downsample’ module which computes low-level features for multiple resolution branches simultaneously. Our network combines spatial detail at high resolution with deep features extracted at lower resolution, yielding an accuracy of 68.0% mean intersection over union at 123.5 frames per second on Cityscapes. We also show that large scale pre-training is unnecessary. We thoroughly validate our metric in experiments with ImageNet pre-training and the coarse labeled data of Cityscapes. Finally, we show even faster computation with competitive results on subsampled inputs, without any network modifications.

**RTbust: Exploiting Temporal Patterns for Botnet Detection on Twitter**

Within OSNs, many of our supposedly online friends may instead be fake accounts called social bots, part of large groups that purposely re-share targeted content. Here, we study retweeting behaviors on Twitter, with the ultimate goal of detecting retweeting social bots. We collect a dataset of 10M retweets. We design a novel visualization that we leverage to highlight benign and malicious patterns of retweeting activity. In this way, we uncover a ‘normal’ retweeting pattern that is peculiar of human-operated accounts, and 3 suspicious patterns related to bot activities. Then, we propose a bot detection technique that stems from the previous exploration of retweeting behaviors. Our technique, called Retweet-Buster (RTbust), leverages unsupervised feature extraction and clustering. An LSTM autoencoder converts the retweet time series into compact and informative latent feature vectors, which are then clustered with a hierarchical density-based algorithm. Accounts belonging to large clusters characterized by malicious retweeting patterns are labeled as bots. RTbust obtains excellent detection results, with F1 = 0.87, whereas competitors achieve F1 < 0.76. Finally, we apply RTbust to a large dataset of retweets, uncovering 2 previously unknown active botnets with hundreds of accounts.

**Binary Stochastic Filtering: a Solution for Supervised Feature Selection and Neural Network Shape Optimization**

Binary Stochastic Filtering (BSF), the algorithm for feature selection and neuron pruning is proposed in this work. Filtering layer stochastically passes or filters out features based on individual weights, which are tuned during neural network training process. By placing BSF after the neural network input, the filtering of input features is performed, i.e. feature selection. More then 5-fold dimensionality decrease was achieved in the experiments. Placing BSF layer in between hidden layers allows filtering of neuron outputs and could be used for neuron pruning. Up to 34-fold decrease in the number of weights in the network was reached, which corresponds to the significant increase of performance, that is especially important for mobile and embedded applications.

**Bayesian Online Detection and Prediction of Change Points**

Online detection of instantaneous changes in the generative process of a data sequence generally focuses on retrospective inference of such change points without considering their future occurrences. We extend the Bayesian Online Change Point Detection algorithm to also infer the number of time steps until the next change point (i.e., the residual time). This enables us to handle observation models which depend on the total segment duration, which is useful to model data sequences with temporal scaling. In addition, we extend the model by removing the i.i.d. assumption on the observation model parameters. The resulting inference algorithm for segment detection can be deployed in an online fashion, and we illustrate applications to synthetic and to two medical real-world data sets.

**ACTRCE: Augmenting Experience via Teacher’s Advice For Multi-Goal Reinforcement Learning**

Sparse reward is one of the most challenging problems in reinforcement learning (RL). Hindsight Experience Replay (HER) attempts to address this issue by converting a failed experience to a successful one by relabeling the goals. Despite its effectiveness, HER has limited applicability because it lacks a compact and universal goal representation. We present Augmenting experienCe via TeacheR’s adviCE (ACTRCE), an efficient reinforcement learning technique that extends the HER framework using natural language as the goal representation. We first analyze the differences among goal representation, and show that ACTRCE can efficiently solve difficult reinforcement learning problems in challenging 3D navigation tasks, whereas HER with non-language goal representation failed to learn. We also show that with language goal representations, the agent can generalize to unseen instructions, and even generalize to instructions with unseen lexicons. We further demonstrate it is crucial to use hindsight advice to solve challenging tasks, and even small amount of advice is sufficient for the agent to achieve good performance.

**Measure of quality of finite-dimensional linear systems: A frame-theoretic view**

A measure of quality of a control system is a quantitative extension of the classical binary notion of controllability. In this article we study the quality of linear control systems from a frame-theoretic perspective. We demonstrate that all LTI systems naturally generate a frame on their state space, and that three standard measures of quality involving the trace, minimum eigenvalue, and the determinant of the controllability Gramian achieve their optimum values when this generated frame is tight. Motivated by this, and in view of some recent developments in frame-theoretic signal processing, we propose a natural measure of quality for continuous time LTI systems based on a measure of tightness of the frame generated by it and then discuss some properties of this frame-theoretic measure of quality.

**Infinite Mixture Prototypes for Few-Shot Learning**

We propose infinite mixture prototypes to adaptively represent both simple and complex data distributions for few-shot learning. Our infinite mixture prototypes represent each class by a set of clusters, unlike existing prototypical methods that represent each class by a single cluster. By inferring the number of clusters, infinite mixture prototypes interpolate between nearest neighbor and prototypical representations, which improves accuracy and robustness in the few-shot regime. We show the importance of adaptive capacity for capturing complex data distributions such as alphabets, with 25% absolute accuracy improvements over prototypical networks, while still maintaining or improving accuracy on the standard Omniglot and mini-ImageNet benchmarks. In clustering labeled and unlabeled data by the same clustering rule, infinite mixture prototypes achieves state-of-the-art semi-supervised accuracy. As a further capability, we show that infinite mixture prototypes can perform purely unsupervised clustering, unlike existing prototypical methods.

Continue Reading…

Collapse

Read More